Application of K-Means Clustering for Regency/City Clustering in East Java Based on 2024 Human Development Index Indicators

Authors

  • Kholidatus Emilia Universitas Pembangunan Nasional "Veteran" Jawa Timur
  • Ayu Sri Rahayu
  • Devina Putri Yuliani
  • Dwi Arman Prasetya
  • Prismahardi Aji Riyantoko

DOI:

https://doi.org/10.33005/jasid.v1i2.21

Abstract

This study applies the K-Means clustering algorithm to group 38 regencies and cities in East Java Province based on five Human Development Index (HDI) indicators for the year 2024. These indicators include Life Expectancy (UHH), Expected Years of Schooling (HLS), Mean Years of Schooling (RLS), and Real Expenditure Per Capita (PPK). The aim of this research is to uncover hidden patterns and disparities in regional development, which can be used as a basis for more targeted and data-driven policy interventions.The optimal number of clusters was determined using three evaluation metrics: the Elbow Method, Silhouette Score, and Davies-Bouldin Index. These evaluations collectively identified three distinct clusters. Cluster 0 represents regions with high levels of development across all indicators. Cluster 1 consists of regions with moderate development levels and potential for improvement, while Cluster 2 contains regions with significantly lower values, particularly in education and income metrics.In addition to clustering, a correlation analysis was conducted to examine the relationship between HDI and its supporting indicators. The results show that Mean Years of Schooling (RLS) and Real Expenditure Per Capita (PPK) have the strongest positive correlation with HDI across all clusters. This highlights the key role of education and economic well-being in improving human development. The findings emphasize the importance of clustering analysis in shaping equitable and region-specific development strategies.

 

References

Badan Pusat Statistik, INDEKS PEMBANGUNAN MANUSIA 2024, Jakarta, 2025.

A. Hanifah, A. Munawaroh, N. Husainah, S. Jamilah, S. Hartinah, S. H. Harun and M. Annas, Pengantar Ilmu Statistik, Duta Sains Indonesia, 2025.

I. K. Sukesa, “CRISP DM Sebagai Salah Satu Standard untuk Menghasilkan Data Driven Decision Making yang Berkualitas”, 22 Juni 2022, [Online]. Tersedia: https://www.djkn.kemenkeu.go.id/artikel/baca/15134/CRISP-DM-Sebagai-Salah-Satu-Standarduntuk-Menghasilkan-Data-Driven-Decision-Making-yang-Berkualitas.html [Diakses: 16 Juni 2025].

A. I. T. Utami, F. Suryaningrum, D. Ispriyanti, "K-Means Cluster Count Optimization With Silhouette Index Validation And Davies Bouldin Index (Case Study: Coverage Of Pregnant Women, Childbirth, And Postpartum Health Services In Indonesia In 2020)", BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 17, no. 2, pp. 0707-0716, 2023.

L. Vendramin, R. Campello, and E. R. Hruschka, “On the Comparison of Relative Clustering Validity Criteria”, Proceedings of the SIAM International Conference on Data Mining, vol. 3, no. 4, pp. 733-744, 2009.

M. D. Kartikasari, “Self-Organizing Map Menggunakan Davies Bouldin Index dalam Pengelompokan Wilayah Indonesia Berdasarkan Konsumsi Pangan”, Jambura J.Math, vol. 3, no. 2, pp. 187-196, 2021.

D. T. Larose, and C. D. Larose, Discovering Knowledge in Data An Introduction to Data Mining Second Edition Wiley Series on Methods and Applications in Data Mining. New Jersey: John Wiley and Sons, Inc, 2014.

R. A. Johnson, and D. W. Wichern, “Applied Multivariate Statistical Analysis”, Prentice Hall, 2002.

Downloads

Published

2025-10-28

How to Cite

Emilia, K., Rahayu, A. S., Yuliani, D. P., Prasetya, D. A., & Riyantoko, P. A. (2025). Application of K-Means Clustering for Regency/City Clustering in East Java Based on 2024 Human Development Index Indicators. Jurnal Aplikasi Sains Data, 1(2), 85–95. https://doi.org/10.33005/jasid.v1i2.21